
Pohlheim, H., Pawletta, S. and Westphal, A.: Parallel Evolutionary Optimization under Matlab on standard computing networks. in Banzhaf, W.
(eds.): GECCO'99 - Proceedings of the Genetic and Evolutionary Computation Conference - Workshop program, San Francisco, CA: Morgan Kauf-
mann, pp. 174-176, 1999.

Parallel Evolutionary Optimization under Matlab
on standard computing networks

Hartmut Pohlheim
DaimlerChrysler AG, Research and Technology

Alt-Moabit 96a, 10559 Berlin, Germany
hartmut.pohlheim@daimlerchrysler.com

Sven Pawletta, Andreas Westphal
University of Rostock, Institut for Automatic Control
Richard-Wagner-Str. 31, 18051 Rostock, Germany

sven.pawletta@etechnik.uni-rostock.de

1 INTRODUCTION
For many computing intensive tasks at DaimlerChrysler
Research MATLAB [1] is used. Matlab has become a de-
facto standard in research and development. Many areas
are catered for by a wide range of toolboxes and the Simu-
link non-linear simulation package along with extensive
visualization and analysis tools. In addition, Matlab has an
open and extensible architecture allowing individual users
to develop further routines for their own applications.
These qualities provide a uniform and familiar environ-
ment on which to use and build extended tools.
Since 1995 we use Evolutionary Algorithms for many dif-
ficult optimization tasks. We employ the Genetic and Evo-
lutionary Algorithm Toolbox for use with Matlab
(GEATbx) [6]. This toolbox provides a large number of
different operators and functions for a wide range of evo-
lutionary algorithms.
For most evolutionary optimization tasks the execution
times were satisfying on standard PC's or workstations
(some minutes to 1-2 hours). However, when optimizing
large systems one run could take more than a day. Such a
long optimization time is not acceptable. From experi-
ments with test systems we knew, that the evolutionary
part of an optimization run takes only 2-10 minutes. The
remaining time is spent on executing the objective func-
tion.
Evolutionary Algorithms are inherent parallel. At each
generation the same objective function is executed with
multiple different data sets (the individuals). This "single
program - multiple data" scheme opens the way for shorter
optimization times by distributing the calculation of the
objective function to multiple machines. Multi processor
machines and clusters of networked computers are readily
available today, especially networks of standard PC's and
UNIX/LINUX workstations.
In 1997 we looked for a tool providing the functionality of
distributing computing tasks to multiple machines or
processors. Our aim was to include this functionality into
Matlab in a transparent way. We appreciate using our fa-

miliar and powerful tools, but combined with a comfort-
able way of distributing calculations to multiple machines.

2 TOOLS AND THEIR INTEGRATION

2.1 DP TOOLBOX

The Distributed and Parallel Processing Toolbox for use
with Matlab (DP Toolbox) [4] provided the features we
were looking for at this time. (MultiMatlab [2] seemed
equally promising, but wasn't available at this time.)
The DP Toolbox for Matlab is one realization of the gen-
eral ''Multi-Instance Concept'' described in [3]. This ap-
proach brings together the convenience of Matlab and
similar systems (especially the interactive way of working)
with the power of parallel and distributed processing.
At the lowest level the DP Toolbox extends Matlab by an
interaction module. This module provides facilities to con-
trol Matlab instances and other programs as well as to
communicate between them. The current versions of the
DP Toolbox are based on primitives for process control
and communication provided by PVM (Parallel Virtual
Machine [5]). PVM is an open system and available for a
large number of operating systems and hardware platforms
including SUN Solaris and WindowsNT.
The DP Toolbox contains several levels of abstraction.
The DP low level implements an interface to the underly-
ing PVM system. But for convenient usage in Matlab ap-
plications the abstraction degree of the PVM routines is
much too low, because they are designed to meet the re-
quirements of classical C or Fortran programming. For
sophisticated Matlab applications the DP high level inter-
face is quite more suitable. This interface provides a small
number of specialized functions for sending and receiving
Matlab data objects (array-passing) and for launching and
terminating Matlab instances. Thus, the user of the high
level interface needs not to worry about all the implica-
tions of the PVM interface.

page 2 (175)

Pohlheim, H., Pawletta, S. and Westphal, A.: Parallel Evolutionary Optimization under Matlab on standard computing networks. in Banzhaf, W.
(eds.): GECCO'99 - Proceedings of the Genetic and Evolutionary Computation Conference - Workshop program, San Francisco, CA: Morgan Kauf-
mann, pp. 174-176, 1999.

2.2 GEA TOOLBOX

The GEA Toolbox [6] is a comprehensive implementation
of Evolutionary Algorithms in Matlab. A broad range of
operators is fully integrated into one environment consti-
tuting a powerful optimization tool applicable to a wide
range of problems. A broader description of the features
of the GEA Toolbox is not the intention of this paper. For
more information about the GEA Toolbox please consult
[6] and [7] or contact the first author.

2.3 INTEGRATION OF TOOLS

For a full integration of the functionality of the DP Tool-
box into the environment of the GEA Toolbox (and other
single program multiple data tasks under Matlab) an addi-
tional application interface was developed. This interface
hides even the last details of the data sending and calcula-
tion distribution tasks.
Thus, the user does not call the problem specific objective
function with multiple data sets. Instead, the master func-
tion is called with appropriate parameters (name of objec-
tive function, data sets and any additional problem spe-
cific parameters). This function starts the virtual machine
and the slave processes and distributes the tasks to the
configured machines (calling the problem specific objec-
tive function with one or multiple data sets). The master
function also collects the results and sends them back to
the calling function. At the end the slaves and the virtual
machine can be closed. Additionally, an efficient load bal-
ancing scheme is implemented inside the master function.
Thus, the configured machines are used as efficient as
possible and slow machines don't slow down the overall
calculation time.
All this integration is done by a multi level approach, see
figure 1. Each level abstracts parts of the lower level. At
the moment only the necessary functionality is imple-
mented. Because of the modular and multi level structure

the implementation of additional functions is easy and
straightforward.
The initial setup of PVM and the remote access service is
currently not totally simple, especially under WindowsNT.
However, these processes are continually improved and
are much easier now than one year ago.
All integrated tools are under continual development. This
includes new features and a higher robustness. We have
very good experience with the described setup. The im-
plementation runs satisfactory. We use it in our everyday
work and we could solve a number of optimization tasks
not manageable before.

3 EXAMPLES AND RESULTS
We used the described Evolutionary optimization setup
for the solution of a number of large and complex systems.
A prominent example was the parameter optimization of a
combustion model of a diesel engine, [8]. The simulation
of the combustion model in one scenario with one parame-
ter set took around 2 seconds (depending on the used
computer). 14 different scenarios were defined.
Typical optimizations were run over 3-10 scenarios. A
3-scenario optimization with 90 individuals over 100 gen-
erations took around 800 minutes or 13.5 hours on one
computer. When extending the optimization to 10 scenar-
ios and 150 individuals over 1000 generations the run
took 4500 minutes or more than 3 days.
By using 5 machines to optimize this system we could
bring down the total computation times to less than 3
hours or 15 hours respectively.
Figure 2 illustrates how the total computation time comes
down when the number of used machines gets larger. 100
objective function calls are equivalent to the calculation of
one generation. However, when using more than 5 ma-
chines, the saved total computation time gets smaller. Ad-
ditionally, we had only 5 equally quick computers, the ad-
ditional 5 machines were slow compared to the first 5 ma-
chines. Nevertheless, when each generation contains at
least 100 individuals, the total computation time can still
be shortened.
Figure 3 shows the distribution of the objective function
calls to 10 different machines. The contribution of the
slower machines is rather small. Nevertheless, as more ob-
jective function calls per generation must be computed,
even some slow machines can calculate some of the jobs.
However, as smaller the number of objective function
calls is as equally fast the used machines should be. Oth-
erwise, more machines don't produce a smaller overall
computation time.

Parallel Virtual Machine (PVM)

DP Toolbox (low level interface)

DP Toolbox (high level interface)

Application Interface (Master and Slave Function)

Evolutionary Optimization (GEA Toolbox)

Figure 1: Scheme of the integration and interface between

PVM, DP Toolbox and GEA Toolbox

page 3 (176)

Pohlheim, H., Pawletta, S. and Westphal, A.: Parallel Evolutionary Optimization under Matlab on standard computing networks. in Banzhaf, W.
(eds.): GECCO'99 - Proceedings of the Genetic and Evolutionary Computation Conference - Workshop program, San Francisco, CA: Morgan Kauf-
mann, pp. 174-176, 1999.

Other systems we optimized using parallel evolutionary
algorithms:

• Optimization of the control of a chopper, [9],
• Optimization of the control strategy for a complex

greenhouse system, [10],
• Parameter optimization of different time consum-

ing Simulink models.

4 CONCLUDING REMARKS
The combination of Matlab, the GEA Toolbox, the DP
Toolbox, and PVM provides a powerful tool for the dis-
tribution of time intensive evolutionary experiments to
multiple machines. Heterogeneous operating systems and
machine architectures could be used at the same time and
in the same computing task. Thus, the available computer
infra structure could be easily employed to solve the tasks
at hand. No special investment in hardware or expensive
software is necessary.
The integration of the DP Toolbox into Matlab and the
GEA Toolbox provides a fully transparent interface to the
user. Depending on the size of the optimization task the
user may use serial or parallel calculation of the objective
function. The switch is just one parameter away. No addi-
tional special software or setup is necessary. The same
tools used every day for evolutionary optimization can be
used for parallel optimization.
By employing a different number of machines the time
needed for the optimization task can be adjusted. As the
results shown above indicate, long optimization tasks
could be finished in 3-6 hours instead of more than one
day. This brings the comfort back to try different settings.
On the other hand we have now the tools to solve evolu-
tionary optimization tasks which were earlier too time
consuming. Thus, new challenges could be approached.

References
[1] MathWorks, The: Matlab - User Guide. Natick, Mass.: The

MathWorks, Inc., 1994-1997. http://www.mathworks.com/
[2] Trefethen, A. E.: MultiMatlab. Cornell Theory Center, 1996.

http://www.tc.cornell.edu/~anne/projects/MM.html
[3] Pawletta, S.: Erweiterung eines wissenschaftlich-technischen

Berechnungs- und Visualisierungssystems zu einer Entwick-
lungsumgebung für parallele Applikationen. Dissertation, Uni-
versität Rostock, 1998. (Extension of a Scientific and Techni-
cal Computing and Visualization System to a Development En-
vironment for Parallel Applications.)

[4] Pawletta, S., Westphal, A., Pawletta, T., Drewelow, W., Due-
now, P.: Distributed and Parallel Application Toolbox (DP
Toolbox) for use with Matlab - User's Guide and Reference
Manual Version 1.4. Institute of Automatic Control, University
of Rostock, 1999. http://www-at.e-technik.uni-rostock.de/dp/

[5] Parallel Virtual Machine. Oak Ridge National Laboratory,
Computer Science & Mathematics Division.
http://www.epm.ornl.gov/pvm/pvm_home.html

[6] Pohlheim, H.: Genetic and Evolutionary Algorithm Toolbox
for Matlab. http://www.geatbx.com/, 1994-1999.

[7] Pohlheim, H.: Entwicklung und systemtechnische Anwendung
Evolutionärer Algorithmen. Aachen, Germany: Shaker Verlag,
1998. (Development and Engineering Application of Evolu-
tionary Algorithms. in german)

[8] Pohlheim, H. und Schütte, A.: Optimierung der Parameter in
einem Verbrennungsmodell für einen Dieselmotor mit Evolu-
tionären Algorithmen. Technischer Bericht FT3/A-1998-001,
Daimler Benz AG, 1998. (Parameter optimization of a combus-
tion model of a diesel engine using evolutionary algorithms)

[9] Pohlheim, H. und Schütte, A.: Optimierung der Regelung eines
Gleichstromstellers mit Evolutionären Algorithmen. interner
Technischer Bericht F3S-97-009, Daimler Benz AG, 1997.
(Optimization of the control of a chopper using evolutionary
algorithms)

[10] Pohlheim, H. and Heißner, A.: Optimal Control of Greenhouse
Climate using real-world weather data and Evolutionary Algo-
rithms. in Banzhaf, W. (eds.): GECCO'99 - Proceedings of the
Genetic and Evolutionary Computation Conference, San Fran-
cisco, CA: Morgan Kaufmann, 1999.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25
100 objective function calls

average calculation time per objective function [s]

ca
lc

u
la

tio
n

 t
im

e
 o

f
e

n
tir

e
 o

p
tim

iz
a

tio
n

 [
m

in
]

 1 slave
 3 slaves
 5 slaves
10 slaves

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

index of machine

o
b
je

ct
iv

e
 f
u
n
ct

io
n
 c

a
lls

 p
e
r

m
a
ch

in
e

Distribution of objective function calls to machines

 50 individuals
100 individuals
200 individuals

Fig 2: Total computation time for 1, 3, 5 and 10 ma-

chines for different calculation times per objec-
tive function call (1-20 seconds)

Fig 3: Distribution of objective function calls to 10 dif-
ferent machines for 50, 100 and 200 objective
function calls

	1	INTRODUCTION
	2	TOOLS AND THEIR INTEGRATION
	2.1	DP TOOLBOX
	2.2	GEA TOOLBOX
	2.3	INTEGRATION OF TOOLS

	3	EXAMPLES AND RESULTS
	4	CONCLUDING REMARKS
	
	References

