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Abstract 

The use of evolutionary algorithms for calcula-
tion of the optimal control of the states of a 
greenhouse system will be presented. The inte-
grated model employed (greenhouse climate, 
crop growth, outside weather conditions and con-
trol equipment) predicts temperature, air humid-
ity and CO2 concentration in a time interval of 
15-60 minutes (short time-scale model). The pa-
per presents the optimization of the control of the 
greenhouse climate to maximize the profit under 
certain constraints (for instance, prevention of 
stress for the crops) using evolutionary algo-
rithms. By incorporation of problem specific 
knowledge into the evolutionary algorithm better 
results were produced in a shorter time. The re-
sults of optimization for optimal control using 
real world weather data are shown. 

1 INTRODUCTION 
The efficiency of plant production in greenhouses depends 
significantly on the adjustment of optimal climate growth 
conditions to achieve high yield at low expense, good 
quality and low environmental load. To achieve these 
goals several components (temperature, air humidity and 
CO2 concentration) must be controlled optimally given 
certain criteria through heating, ventilation and CO2 injec-
tion. The continually changing optimal state must be 
maintained over the full growth period. Thus, a high di-
mensional optimization task must be solved. 
Solutions based on non-linear optimization employing 
yield models (cucumber, tomato) for discretization inter-
vals of several days were presented in, for instance, [1], 
[8] and [11]. These solutions represent dynamic long time-
scale controls, that should be supplemented by short time-
scale controls (minutes, hours). The long time-scale con-
trol is the high level control defining the valid control do-
main for the low level short time-scale control. 

This paper presents the optimization of temperature, air 
humidity and CO2 concentration employing an integrated 
greenhouse climate model ([6]) for short time-scale pre-
diction (15-60 minutes). This model can be employed for 
short time-scale control tasks such as maximization of 
crop growth and the prevention of stress. Modified evolu-
tionary algorithms were used to solve the optimization 
task. Two evolutionary algorithms are outlined and the 
advantages and disadvantages of each are discussed. Real 
world weather data were used for the optimization. 
Section 2 briefly describes the greenhouse climate model. 
In Section 3 the optimization algorithms used are outlined. 
The optimization results are presented in Section 4. Sec-
tion 5 gives concluding remarks and some directions for 
further investigations. 

2 GREENHOUSE CLIMATE MODEL 
The greenhouse climate model, Figure 1, describes the 
dependence of temperature, air humidity and CO2 concen-
tration inside the greenhouse on the outside weather con-
ditions and the control equipment using 3 nonlinear dif-
ferential equations of first order. 
The 3 differential equations of the model are the balance 
equations of the greenhouse interior for 1) energy (tem-
perature, TEMI [°C]), 2) vapor, DDI [g/m3] (air humidity), 
and 3) CO2 (CO2 concentration, CI [ppm]). The short 
time-scale crop growth model consists of 2 equations for 
1) transpiration, trans [g/m2·h] and 2) CO2 gas exchange, 
gawe [g/m2·h] ([7]). We use the crop growth model for 
sweet pepper throughout the whole paper. 
The greenhouse climate can be influenced by 4 control 
components: 1) heating, Q [W/m²], 2) ventilation, LR 
[m³/(m²·h)], 3) CO2 enrichment, W [g/(m²⋅h)] and 4) vapor 
injection, RM [g/(m²⋅h)]. 
The outside weather conditions to be measured are 1) so-
lar radiation, IGLOB [W/m2], 2) air temperature outside, 
TEMA [°C], 3) air humidity outside, FA [% r.F.], 4) CO2 
concentration outside, CA [ppm] and 5) wind speed, U 
[m/s]. 
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The greenhouse model uses only one compartment (inte-
rior of the greenhouse including plants). Thus, additional 
input values have to be considered: 1) floor temperature, 
TEMB [°C] and 2) cover temperature, TEMG [°C]. Both 
values can be measured. Another possibility (used here) is 
the derivation of these values from the outside weather 
conditions and the inside climate through a regression 
model. 
The temperature used in the balance equations is deter-
mined by the specific heat capacity of air and plants in the 
greenhouse. Thus, the temperature is the average of air 
and plant temperature. 
The model uses a number of physical constants, green-
house parameters, and coefficients for the description of 
transpiration and CO2 gas exchange by models and plant 
parameters. Due to space limitations this paper only 
briefly outlines the model. For an extended description of 
all parameters and equations as well as an explanation of 

all variables refer to [6], [7] and [9]. 
The profit, PROFIT [0.01 DM/(m²⋅h)] is represented by: 
1) biomass, BIOM, 2) fruit price, PR1, 3) cost of CO2 
enrichment, PR2, and 4) cost of heating, PR3. 

PROFIT=YIELD PR W PR Q PR⋅ − ⋅ − ⋅1 2 3  (1) 

The dried fruit biomass, BIOM, is calculated by the CO2 
gas exchange of the plants, gawe. The biomass is con-
verted into YIELD by multiplying the biomass with the 
percentage of yield (55%) and dividing with the percent-
age of dried fruit mass (8.5%). The cost of CO2 enrich-
ment is calculated from the price of CO2 and the cost of 
heating from the price of oil. 
The standard constraints of the controls are defined by the 
boundaries of the domain of the control variables: heating 
[0...150 W/m2]; air ventilation [2...100 m3/(m2·h)] and 
CO2 enrichment [0...10 g/(m2·h)]. Vapor injection is not 
currently used. 
The states of the greenhouse climate are constrained to 
prevent stress of the plants. Currently we employ con-
straints for the temperature in the greenhouse. The tem-
perature should always be above 16°C and if possible not 
higher than 36°C. 
Figure 2 provides an overview of the interdependencies 
between all elements of the integrated greenhouse climate 
model and the dependencies used to calculate the profit. 
The greenhouse climate model is a set of first-order dif-
ferential equations. Using the initial values of the vari-
ables of the differential equations the system has a solu-
tion for a final point. The integration of these equations 
solves the system over a given time period. We used an 
embedded RUNGE-KUTTA method of 4th(5th) order for the 
integration of the greenhouse climate model. 

3 DESCRIPTION OF THE 
OPTIMIZATION ALGORITHM 

For the greenhouse climate model a control should be cal-
culated. Thus, methods of optimization of dynamic sys-
tems must be used. 
Evolutionary algorithms were used as optimization algo-
rithm, an alternative to deterministic optimization algo-
rithms. Evolutionary algorithms differ from deterministic 
search methods (for instance gradient methods) mainly in 
the manner in which variables are changed. Whereas gra-
dient methods change the variables according to determi-
nistic rules, evolutionary algorithms are based on random 
transition rules. Thus, evolutionary algorithms do not de-
pend on special properties of the objective function. The 
design of the objective function is not constrained by spe-
cial requirements. This allows straightforward implemen-
tation and use of the evolutionary algorithm for optimiza-
tion of large and complex systems. For a further discus-
sion of evolutionary algorithms refer to [10]. 

control vapor injection
CO2 enrichmentventilation

heating

CO2 concentration

CO2
(CO2 concentration)

vapor
(air humidity)
condensation

energy
(temperature)

solar radiation

air temperature

air humidity

wind speed
outside weather conditions

greenhouse

crops
(sweet pepper)

 

Figure 1: Scheme of Greenhouse Climate Model 

Weather
solar radiation,
temperature, air

humidity, wind speed,
CO2 concentration

yield
(biomass)

Plant
transpiration

CO2 exchange (biomass)

Control
heating

CO2 injection
ventilation

Constraints
control
climate

Profit

Greenhouse climate
temperature
air humidity

CO2 concentration

heating
CO2 injection - +

 

Figure 2: Scheme of Profit Calculation showing Depend-
encies 



page 3  (1674) 

Pohlheim, H., Heißner, A.: Optimal Control of Greenhouse Climate using Real-World Weather Data and Evolutionary Algorithms. in Banzhaf, W. 
(ed.): GECCO'99 - Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA: Morgan Kaufmann, p. 1672-1677, 
1999. 

3.1 PARAMETERS OF THE EVOLUTIONARY 
ALGORITHM 

For optimization we employed two evolutionary algo-
rithms: the Multi Strategy Competition Evolutionary Al-
gorithm (MSCEA) and the Evolution Strategy Evolution-
ary Algorithm (ESEA). Both algorithms are part of the 
Genetic and Evolutionary Algorithm Toolbox for use with 
MATLAB [10], which was used for all computations. 
The following operators and parameters were used for the 
MSCEA: 
• 4 subpopulations with 50 individuals over 100-250 

generations, 
• fitness assignment by linear ranking (selective pres-

sure: 2), 
• elitest truncation selection, generation gap: 0.9, 
• discrete recombination and line recombination, 
• real valued mutation, mutation rate: 1/(number of 

variables per individual), different precision (rough, 
middle, fine) and range settings (large, middle, small), 

• unrestricted migration every 20 generations, 
• competition between subpopulations every 8 genera-

tions. 
The MSCEA represents a global search algorithm. Every 
subpopulation implements a different search strategy, 
from a rough search (large mutation steps) to a fine and 
local search (small mutation steps). All these different 
search strategies work at the same time. However, suc-
cessful strategies get additional resources (these subpopu-
lation grow in size) and less successful strategies loose 
resources. At the beginning of an optimization run, the 
broad search is often successful and quickly finds promis-
ing areas. Later, the finer search strategies are better 
suited and the resources are redistributed in favor of these 
strategies. 
The following operators and parameters were used for the 
ESEA: 
• 3 subpopulations with 2 individuals over 200-400 

generations, 
• no fitness assignment between individuals (selective 

pressure: 1), 
• every individual produces 6 offspring (generation 

gap: 6), 
• best two offspring of every subpopulation replace 

parents forming new subpopulations, 
• no recombination, 
• mutation by mutation operator of an evolution strat-

egy [5] using different initial sizes of individual muta-
tion steps (large, medium and small). 

The ESEA represents a local search algorithm. The muta-
tion operator adapts individual step sizes. After a number 
of generations, a more directed search can be executed. 
However, the operator needs a number of generations (de-
pending on the number of variables) to adjust these step 

sizes. The ESEA is able to follow a direction and can thus 
handle correlated variables. The choice of the initial step 
sizes is important for the success of the ESEA. To make 
the algorithm more robust different initial step sizes were 
employed using the principle of different strategies for 
each subpopulation. Because ESEA is a local search strat-
egy it could become trapped in local minima. 
Both algorithms are able to solve the problem at hand. 
Because of their different properties each algorithm excels 
at different points of the optimization. The MSCEA is best 
suited for initial optimization to find promising areas for 
the following searches or to gather and adjust problem 
specific knowledge. The MSCEA is a robust search and 
produces good results all the time. The ESEA is very good 
at searching in a smaller area, because of the local search 
properties. At the later stages of the optimization the prob-
lem often incorporates correlated variables - a condition 
much easier for ESEA than for MSCEA. 
Both algorithms were used during the optimization proc-
ess. The initial optimizations were mostly carried out us-
ing the MSCEA. In later stages of the optimization proc-
ess, when problem specific knowledge was incorporated 
into the search, the ESEA was mainly used. However, 
without the MSCEA it would have been difficult to gather 
all this problem specific knowledge. 

3.2 REPRESENTATION OF INDIVIDUALS AND 
COST FUNCTION 

Each individual in the evolutionary algorithm represents 
the control variables of the simulation period. As shown in 
Section 2 the greenhouse climate model can be controlled 
employing 4 control variables. Currently we are using 3 
control variables: heating, ventilation and CO2 enrich-
ment. Vapor injection is set to zero all the time. 
The control variables are discretized at equidistant time 
points. For the simulation a first order hold is employed to 
obtain control values between the discretization points. 
The number of variables per individual can be obtained 
using equation 2: 

NumVar SimTime
ControlStep

NumControl
ControlStep h
NumControl

= +






 ⋅

=
=

1
0 25
3

;
.  (2) 

A control step every 15 minutes is small enough for the 
simulation and keeps the number of variables as small as 
reasonable. Thus, for a simulation time of 4 hours an indi-
vidual consists of 51 variables. 
To keep the number of variables and the optimization time 
acceptable a simulation period of 4 hours was normally 
employed. To optimize longer time periods the optimiza-
tion was divided into 4-hour-pieces and the end states of 
one simulation were used as start values of the next pe-
riod. Thus, arbitrarily long simulation periods could be 
computed using standard hardware (PC Pentium 200 
MHz, 96MB RAM). 
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The cost function used in the model is the maximization of 
profit, equation 1, under fulfillment of all constraints. As 
the Genetic and Evolutionary Algorithm Toolbox opti-
mizes by minimization in equation 3 the profit is multi-
plied by -1. To enforce the constraints the cost function 
assigns a penalty to individuals which do not meet the de-
fined constraints. 

Cost PROFIT dt Penalty
T

T

S

E

= − +∫  (3) 

For the penalty function a weighted sum was utilized, 
equation 4. Val is either one of the state variables of the 
greenhouse climate or a control value, Constr the corre-
sponding constraint. In choosing the weights W the impor-
tance of every constraint can be defined. 
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3.3 INCORPORATION OF DOMAIN SPECIFIC 
KNOWLEDGE 

First optimizations of the greenhouse climate model were 
done without using any problem specific heuristics. How-
ever, the computation could be accelerated considerably 
by incorporating domain specific knowledge. 
In a standard evolutionary algorithm the initialization of 
the individuals is done uniformly at random in the domain 
of every variable. Here, a special initialization function 
was employed. The initialization of the variables of the 
individuals was restricted to a small band of the domain. 
This band was defined by good control strategies for stan-
dard weather conditions of the respective time of year. Us-
ing the MSCEA, solutions for every month of the year 
were calculated. These good solutions formed the center 
of the initialization area. Not only a good solution for the 
respective month was used as initialization base. Addi-
tionally, good starting solutions of the previous and fol-
lowing two months were included. The rationale for this is 
that these days are similar under different weather condi-
tions. A cold day in June could be very similar to a normal 
day in April and a hot day in June is similar to a normal 
day in August. 
Another area of incorporation of problem specific knowl-
edge is changing the domain of the variables depending on 
the time of year. For example, in winter the range of venti-
lation is much smaller than in summer. The converse is 
true for heating. Thus, the search could be further nar-
rowed down and the guiding of the evolutionary algorithm 
enhanced. However, this method is very specific and 
could not be generalized for other problems. For every 
month of the year boundaries for all three control vari-
ables were defined. The boundaries were further specified 
down to one hour of a day. During optimization the re-

combination and mutation operators worked over this spe-
cifically defined domain of the variables. 
Another possibility is the use of other heuristics known 
from practice. If heating is high, ventilation is not really 
useful, the same is true for CO2 enrichment and vice versa. 
However, at the moment such heuristics are not used. 
Using the special initialization and the specification of the 
search domain for every month better solutions for the 
control values could be obtained in a smaller number of 
generations. Additionally, using problem specific knowl-
edge the search was more robust and reached consistently 
better results, even compared to a much longer running 
uninitialized evolutionary algorithm. 
All this shows that the evolutionary algorithm is only one 
part of the optimization algorithm. In particular, if online 
response time requirements in practical use of the model 
and optimization should be met, all possibilities for en-
hancing the control must be used. 

4 EXPERIMENTAL RESULTS 
In this section an example of the results of simulation ex-
periments using the greenhouse climate model, evolution-
ary algorithms and problem specific knowledge is pre-
sented. The weather data used in this report are measured 
weather data for Großbeeren (Berlin), Germany in 1995. 
The optimizations were carried out for all available 
weather data, April - September 1995. Because of space 
limitations one example is presented only. This example 
gives a good impression of the possibilities and power of 
the presented system. 
The four graphs in figure 3 show all relevant data from the 
simulation of the system using the optimized control val-
ues. All graphs employ the same time scale, day of the 
year. The fourth graph contains the real world weather 
data. The most important information is the value of the 
solar radiation, IGLOB. The solar radiation is high on all 
days except the third. The third day shows almost no solar 
radiation. The third graph shows the optimized control 
values over the whole time scale. The third day is striking: 
high heating and only a short period of CO2 injection are 
used. The top graph presents the resulting states of the 
greenhouse climate. The second graph shows the cumula-
tive biomass production and the resulting profit according 
to equation 1. All four graphs together give a compact 
overview of the states of the system. 
Some results are similar for all five days. Heating is on 
overnight to maintain the lower constraint, 16°C, for the 
inside temperature, TEMI. The heating is not higher than 
is necessary to keep this temperature. During the day CO2 
injection is on to increase the CO2 concentration. 
Further simulation results for other days (not presented 
here) show further characteristics. If ventilation is on, no 
or less CO2 is injected, because the cost to maintain a 
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higher CO2 concentration with ventilation on is higher 
than the increased yield. When the inside temperature gets 
too high, due to high solar radiation, ventilation is opened. 
It is difficult to compare the calculated control strategies 
to strategies derived using different models or optimiza-
tion techniques. At the moment we are looking for a com-

parable system or implementation. One possibility could 
be a strategy that computes optimal controller set points 
for day and night or every hour, as is often employed in 
current greenhouse control systems. However, these 
strategies must still be implemented and calculated. 
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Figure 3: Results of Optimization of the Greenhouse Climate Model under Real World Weather 
Conditions over Five Consecutive Days in May 1995 
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5 CONCLUDING REMARKS 
In this paper experiments on control of greenhouse cli-
mate were presented. The results show the applicability of 
evolutionary algorithms for calculation of the optimal con-
trol. The calculated control strategies for heating, ventila-
tion and CO2 injection to adjust optimal climate inside the 
greenhouse depending on real world weather conditions 
agree with experience and theoretical knowledge. 
The integrated greenhouse system is regarded as one 
complete system for the optimization. The greenhouse 
climate model used and the crop growth model integrate 
all necessary components of the system. Any changes in 
one of the parameters or equations is without any further 
adjustments and immediately effective. The evolutionary 
algorithms used provide a direct application, compared to 
classical optimization methods. The adaptation to new 
greenhouses or different plant models is straightforward. 
No special adjustment of the optimization task is neces-
sary. Another advantage is the detailed and easy definition 
of the cost function. Problem specific knowledge can di-
rectly be incorporated. All this ensures easy usage. 
This paper presented one example of optimization results 
for the control of the greenhouse climate using real world 
weather conditions. The results showed the fine grained 
reaction of the optimization to changing weather condi-
tions, during one day or from day to day. The experiments 
presented are just one small example of the experiments 
carried out. The optimization was done for all available 
weather data of 1995, April to September. 
All this justifies the further development of the underlying 
optimization method and its application to specific tasks 
of control of greenhouse climate. However, to use the 
method for online optimization, the current computing 
times (30-45 minutes for a simulation interval of 4 hours) 
should be reduced further. Promising directions are the 
further enhancement of the evolutionary algorithm and the 
incorporation of an extended repetitive optimization strat-
egy. 
In future research we will consider the incorporation of 
long time-scale models and strategies to define the actual 
best climate conditions and the constraints for various 
states. The plant models will also be enhanced. 
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